Anodic Oxidation of Triphenylphosphine in the Presence of Enol Silyl Ethers or Enol Esters. Electrochemical One-step Preparation of 2-Oxocycloalkyltriphenylphosphonium Tetrafluoroborates

Toshikatsu Takanami, Akie Abe, Kohji Suda* and Hidenobu Ohmori b

- ^a Meiji College of Pharmacy, 1-35-23, Nozawa, Setagaya-ku, Tokyo 154, Japan
- ^b Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565, Japan

Electrochemical oxidation of triphenylphosphine in the presence of cyclic enol silyl ethers or enol esters gave 2-oxocycloalkyltriphenylphosphonium salts, which underwent the Wittig reaction with aldehydes to afford (*E*)-2-alkylidenecycloalkan-1-ones.

The triphenylphosphine radical cation [Ph₃P+'] 2¹ generated by electrochemical oxidation of triphenylphosphine 1 reacts with electron-rich alkenes to form phosphonium salts with a P–C bond.² 2-Oxoalkylidenetriphenylphosphoranes 3 are valuable intermediates in Wittig alkenation reactions providing enones and heterocyclic compounds.³ The preparation of acyclic 2-oxoalkyltriphenylphosphonium salts 4, the precursor of 3, is straightforward and may be accomplished by nucleophilic substitution of α -haloketones with 1 (Scheme 1).⁴ However, 2-oxocycloalkyltriphenylphosphonium salts cannot be prepared in this way.⁵ An alternative approach to the cyclic phosphonium salts involves multi-step sequences, resulting in low overall yields of the desired products.⁶

In this communication we describe a new one-step synthesis of 2-oxocycloalkyltriphenylphosphonium tetrafluroborates 5 based on the anodic oxidation of triphenylphosphine 1 in the presence of an enol silyl ether or enol esters (Scheme 2).

Enol silyl ether 6 and two enol esters with five- to seven-membered rings, viz, enol phosphates 7 and enol acetates 8, were chosen, and their optimal electrolysis conditions were determined with the five-membered rings substrates 6a, 7a and 8a. The enol acetate 8a was the most efficient substrate. Table 1 summarizes the results of constant-current electrolysis (CCE) performed in an undivided cell under a dry nitrogen atmosphere. All the substrates were converted to 2-oxocycloalkyltriphenylphosphonium tetra-fluoroborate 5.† The CCE required 1 in excess over the enol

[†] **5a**: m.p. 228–230 °C (from CH₂Cl₂–diethyl ether); IR (KBr) 1723 cm⁻¹ (C=O); ¹H NMR (CD₃CN) δ 4.72–4.63 (1H, m, HCP+Ph₃); ¹³C NMR (CD₃CN) δ 211.3 (C=O), 44.6 (J_{PC} 55.7 Hz, CP+Ph₃), 39.9, 28.1, 22.4.

OAc
OAc
OAc
OP+Ph₃BF₄

8d'
$$n = 1$$
8e' $n = 2$

Scheme 2

Table 1 Anodic oxidation of 1 in the presence of enol silyl ether 6 or enol esters 7 and 8^a

Run	Compound (amount/mmol)	Product	Yield (%)b
1	6a (3.0)	5a	11
2	7a (3.0)	5a	29
3	7a (1.0)	5a	51 (25)c
4	7b (3.0)	5b	23 ` ´
5	8a (3.0)	5a	47
6	8a (1.5)	5a	83 (45) ^c
7	8a (1.0)	5a	96 ` ´
8	8b (3.0)	5b	53
9	8b (1.0)	5b	93
10	8c (1.0)	5c	93
11	8d (1.0)	5d	92
12	8e (1.0)	5e	94

 a Electrolysis conditions: CCE of PPh3 (3 mmol) in MeCN (40 ml) containing an enol silyl ether or an enol ester and LiBF4 (0.2 m); anode: glassy carbon plate, cathode: lead plate; electrolysis current: 20 mA (current density, 1 mA cm $^{-2}$). After 2 F per mol of 1 had been passed the reaction mixture was worked-up in a conventional manner.§ b Isolated yield based on 6, 7 and 8. c Electrolysis was performed in air.

Table 2 Wittig reaction of 5 with aldehydes 11

Product	R^{1}	\mathbb{R}^2	n	Yield (%) ^a
(12a)	Н	Prn	1	43
(12b)	Н	PhCH2CH2	1	62
(12c)	H	PhCH ₂ CH ₂	2	58
(12d)	Me	PhCH ₂ CH ₂	1	56
(12e)	Me	PhCH ₂ CH ₂	2	51

^a Isolated yields, reaction conditions: 5, 11, CH₂Cl₂, NaOH.

esters 7 and 8 (runs 3, 6 and 7). Water contamination during the electrolysis decreased the yield of 5 (runs 3 and 6). Under the conditions adopted in run 7, other enol acetates 8b—e were converted to the corresponding 2-oxoalkylphosphonium salts 5b—e in excellent yields (runs 9–12).‡ The phosphonium salt 5d derived from 8d was a 2:5 mixture of cis- and trans-isomers. whereas 5e was a single isomer for which the stereochemistry has yet to be assigned. However, no phosphonium salts were obtained from 1-acetoxy-2-methylcycloalkenes such as 8d′ and e′. The present method can also be applied to the synthesis of acyclic 2-oxoalkylphosphonium tetrafluoroborates. Isopropenyl acetate 9 was converted to the 2-oxoalkylphosphonium salt 10 in 94% yield.

To estimate the validity of the 2-oxocycloalkylphosphonium salts $\mathbf{5}$ as a building block in synthetic organic chemistry, we examined their Wittig reactions with aldehydes $\mathbf{11}$ (Scheme 3). As shown in Table 2 the reactions proceeded as expected to afford the corresponding (E)-2-alkylidenecycloalkan-1-ones $\mathbf{12}$.

Received, 8th May 1990; Com. 0/02020F

References

- 1 H. Ohmori, H. Maeda, M. Tamaoka and M. Masui, *Chem. Pharm. Bull.*, 1988, **36**, 613; and references cited therein.
- H. Ohmori, T. Takanami and M. Masui, Tetrahedron Lett., 1985, 2199; Chem. Pharm. Bull., 1987, 35, 4960; T. Takanami, K. Suda, H. Ohmori and M. Masui, Chem. Lett., 1987, 1335; T. Takanami, A. Abe, K. Suda, H. Ohmori and M. Masui, Chem. Pharm. Bull., in the press.
- 3 (a) I. Gosney and A. G. Rowley, in Organophosphorus Reagents in Organic Synthesis, ed. J. I. G. Cadogan, Academic Press, London, 1979, p. 17; (b) E. Zbiral, ibid., p. 223.
- 4 J. I. G. Cadogan, in ref. 3(a), p. 1.
- S. Trippet and D. M. Walker, J. Chem. Soc., 1961, 1266;
 S. Trippett, ibid., 1962, 2337;
 P. A. Chopard, R. F. Hadson and G. Klopman, ibid., 1965, 1379;
 I. J. Borowits and L. I. Grossman, Tetrahedron Lett., 1962, 471;
 I. J. Borowits, K. C. Kirby and R. Virkhause, J. Org. Chem., 1966, 31, 4031.
- 6 H. O. House and H. Babad, J. Org. Chem., 1963, 28, 90.
- 7 N. Katsin and R. Ikan, Synth. Commun., 1977, 7, 185; T. Takanami, K. Suda and H. Ohmori, Tetrahedron Lett., 1990, 677; R. Noyori, Y. Ohnishi and M. Katoh, J. Am. Chem. Soc., 1972, 94, 5105.

[§] The reaction mixture was concentrated *in vacuo*, treated with water and CHCl₃. The organic layer was dried, concentrated and poured dropwise into dry diethyl ether. The resulting precipitate was recrystallized from CH₂Cl₂-diethyl ether.

 $[\]ddagger$ All the new compounds gave satisfactory analytical and spectral data.

[¶] The positions and the configurations of the double bonds in compounds 12a-e were established by comparison of their ¹H NMR data with those of the authentic and related compounds reported in ref. 7.